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ADVANCING HUMAN-AI COLLABORATION:

MULTIMODAL SYSTEMS FOR ACCESSIBILITY,

RESEARCH, AND LEARNING

FARID KARIMLI

ABSTRACT

This thesis explores domain-specific AI applications in assistive technology, botany

and education. First, CameraMouse, an AI-powered system, enables computer use for

individuals with severe motor impairments by converting head movements into cursor

control. User studies highlight its effectiveness in enhancing accessibility. Next, the

thesis addresses species recognition and analysis in herbarium research, using fine-

grained image classification, zero-shot learning, and conversational models. Early

experiments show promising results in identifying subtle species differences. Lastly, a

suite of tools and modules to enable AI-powered academic assistants was developed.

These contributions demonstrate AI’s impact on accessibility, botany, and education.
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Chapter 1

Introduction

The intersection of artificial intelligence (AI) and human-computer interaction (HCI)

has transformed the way people interact with technology, enhancing personal work-

flows, interaction with devices and productivity. AI-driven systems have played a

pivotal role in improving accessibility through tools like voice-controlled assistants

and speech-to-text software, enhancing education with intelligent tutoring systems,

and advancing scientific research through automated image analysis in fields such as

medical diagnostics and environmental monitoring. By leveraging the synergy be-

tween multimodal AI and user-centric design, these systems address critical societal

needs, paving the way for inclusive and efficient workflows.

This thesis presents contributions in three interrelated areas: assistive technology

for accessible device control, academic engagement through AI tutors, and large-scale

image classification for herbarium image analysis. Each project integrates state-of-

the-art AI models to solve unique challenges while contributing to the broader goal

of designing intelligent systems that enhance access, productivity, and collaboration.

1.1 Empowering Accessible Personal Device Control

Assistive technologies are critical for individuals with severe motor impairments, who

often face significant barriers when interacting with traditional input devices. To ad-

dress this need, this thesis introduces two complementary systems: CameraMouseAI

and KeyGlide.
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1. CameraMouseAI is a head-controlled mouse replacement system for individuals

with severe motor impairments that enhances traditional dwell-time mecha-

nisms by incorporating customizable facial gestures. Its customization allows

for easy adaptation to individual user needs, ensuring flexibility across diverse

motor impairments. By leveraging AI-based facial feature tracking, the system

empowers users to interact with personal devices independently and intuitively.

This work was published in ASSETS ’24 (Karimli et al., 2024).

2. KeyGlide is an on-screen text input interface that is purely motion-based, mean-

ing it enables users to select keys and words by mouse pointer movement only.

Users do not need precise control of the mouse pointer location since no pointing

and clicking activities are required for the selection operation. Users can select

groups of keys and keys within these groups by simply moving the mouse pointer

sideways when the desired group or key becomes highlighted by an automated

gliding-through-choices process. Word completion, prediction and spell-check

are integrated into the interface to support the user in fast and accurate text

input.

Together, these systems aim to provide greater autonomy to users, advancing ac-

cessibility in personal computing and communication. This thesis describes extensive

user experiments with CameraMouseAI and KeyGlide, involving users with severe

motion impairments.

1.2 Driving Student Engagement using Academic AI Assis-

tants

The rapid growth of online education, student enrollment and complex course con-

tent necessitates intelligent tools that support both students and educators. This
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thesis introduces Edubotics.ai, a platform designed to enhance academic engagement

through AI-powered conversational assistants.

1. The platform includes intelligent data extraction pipelines capable of processing

diverse content formats such as PDFs, Markdown files, Jupyter notebooks, and

GitHub repositories. These pipelines not only capture complex visual elements

but also extract semantic metadata to ensure contextually accurate responses.

2. A robust retrieval system, designed to handle diverse course content, enables

dynamic adaptation to different learning environments.

The work described in this thesis is a step toward the goals of the platform’s

developers, to seamlessly adapt to new courses and diverse content formats, helping

instructors easily deploy assistants that provide personalized support for students,

reduce staff workload and provide insight into students’ learning progress.

1.3 Towards a Foundation Model for Herbarium Analysis

Herbarium specimens play a pivotal role in understanding plant morphology, taxon-

omy, and ecological trends. However, their manual curation remains labor-intensive

and prone to human error. This thesis contributes to the development of a multimodal

foundational model for herbarium specimen analysis, emphasizing the integration of

computer vision and natural language processing for zero-shot classification tasks.

1. Leveraging the SWIN Transformer architecture (Liu et al., 2021a), this work

seeks to replicate and improve upon previous research that demonstrated strong

performance in large-scale herbarium species recognition, where a team achieved

87% accuracy on NAFlora-1M, a dataset of over 15,000 herbarium species (Park

et al., 2024).

https://github.com/edubotics-ai
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2. This work seeks to scale the classification by combining SWIN with CLIP (Rad-

ford et al., 2021) - a model capable of recognizing categories it was not explicity

trained on by understanding the semantics of text (species names) and images.

These are steps towards developing a collection of multimodal foundation mod-

els tailored for large-scale herbarium analysis. The ultimate goal is to streamline

botanical research by providing scalable and accurate tools that reduce the burden

of manual specimen annotation and can understand and inform visual differences

between species images.

This thesis underscores the transformative potential of AI when applied to di-

verse domains such as accessibility, education, and scientific research. By building

on established methodologies and exploring novel solutions, the work presented here

provides a foundation for future advancements in assistive technologies, academic

tools, and fine-grained classification models. These projects are unified by a common

goal: towards AI-powered intelligent systems that enhance productivity, learning, and

access.
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Chapter 2

Empowering Accessible Personal Device

Control using Facial Feature Tracking and

Gesture Recognition

2.1 Introduction

Recent advancements in assistive technologies for individuals with severe motor dis-

abilities such as Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS)

have led to the development of several mouse-replacement solutions. Earlier solu-

tions used classic computer vision techniques such as template matching for facial

feature tracking and detection, translating their location to mouse pointer coordi-

nates (Betke et al., 2002; Su et al., 2005). Other solutions rely on deep learning

techniques such as object detection to track facial features (Kalabarige et al., 2023),

or record head (Fu and Huang, 2007; Kurauchi et al., 2015; Waber et al., 2005) and

eye gaze direction (Alagarsamy et al., 2022; Feng et al., 2021; Vazquez-Li et al., 2016;

Kurauchi et al., 2015), and use input from external sensors and devices to move the

mouse cursor (Huang et al., 2006).

Existing technologies face significant challenges, including limited interface con-

trol, high costs, reliance on external devices, and inadequate customization options.

These limitations underscore the need for innovative solutions that offer greater preci-

sion, ease of use, and cater to the diverse needs and conditions of users with movement

disabilities (Feng et al., 2018). Current solutions also tend to be self-contained and
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do not easily allow for updates or integration with new components. The lack of

modularity prevents researchers and developers from upgrading certain aspects of

available systems, such as implementing better head movement trackers or selection

mechanisms, without having to replace the entire system.

To address these challenges, an AI-based mouse-replacement interface, called

CameraMouseAI, is proposed. This interface enables users to customize features ac-

cording to their preferences and needs. Every aspect of its operation is customizable:

mouse pointer movement sensitivity, gestures for clicking and their sensitivities, and

screen exclusion. These adaptive capabilities, paired with state-of-the-art tracking

technologies and a novel method to map a user’s nose tip to mouse pointer coordi-

nates, significantly reduce the cognitive effort required for interaction (Magee et al.,

2011). Using our interface, a computer user can navigate their device screen with

head movements and facial gestures, and can thus browse the web. To enable textual

input, a no-click, movement-based keyboard interface was developed and can be used

with CameraMouseAI.

We designed CameraMouseAI with a modular architecture that allows for seamless

replacement or augmentation of AI models that interpret the user’s intent, thereby

extending the useful life of the technology without requiring users and researchers

to invest in entirely new systems. For example, researchers can update face or fa-

cial landmark detection models, or add new selection mechanisms based on users’

requirements. The modularity of CameraMouseAI thus supports the design of tai-

lored research tools that can adapt to diverse and evolving patient needs. The main

contributions of this work are to provide

• a mouse-control interface for people with severe motion disabilities that is

based on real-time artificial intelligence and has extensive customization op-

tions, thereby offering a more personal device interaction experience on case by
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case basis,

• a modular architecture and open-source code that enable researchers and de-

velopers to experiment with and enhance the system,

• a pilot user study that involved individuals with and without disabilities.

The code for CameraMouseAI can be downloaded at

https://github.com/hicsail/cameramousejs

In the following sections, I describe our design, discussing our user-centric ap-

proach, the integration of AI technologies, and the significance of the modular de-

sign in the broader context of assistive technologies. We also describe a small user

study. My specific contributions are integrating facial gestures for clicking, adding

customization options such as facial gesture thresholds, general code infrastructure,

and the KeyGlide text input interface.

2.2 CameraMouseAI Interface

2.2.1 Interface

The Interface component is responsible for managing user interactions and system

configurations. It features a minimalist graphical user interface (GUI) with two pri-

mary tabs: ”Home” and ”Settings.” The Home tab, shown in Fig. 2·1, provides the

user with real-time feedback on the location of their tracked facial feature, the nose,

within an operative window of possible movements. The Home tab also enables users

to initiate or stop tracking via keyboard input. The Settings tab, shown in Fig. 2·2,

offers customization options such as click mechanisms (dwell time, mouth opening,

eyebrow raising), sensitivity adjustments, and screen exclusion settings. Users can

fine-tune parameters like gesture thresholds and mouse pointer sensitivity to suit their

individual needs, enhancing usability and reducing accidental inputs.

https://github.com/hicsail/cameramousejs
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Figure 2·1: Graphical User Interface of the CameraMouseAI: Home
tab and webcam image showing the operative window (green box) and
the tracked facial feature (red dot).

2.2.2 Architecture and Modular Design

An overview of the architecture of CameraMouseAI is provided in Fig. 2·3. The

application consists of two com- ponents: the Interface (green box) and the Video

Processor (purple box). The interface handles the interaction of the user with the

system, enabling the user to start or stop the tracking, switch between clicking meth-

ods, and customize settings. The video processor performs face and facial landmark

detection, followed by tracking and command interpretation. The two components

communicate in real time to ensure uninterrupted, smooth operation. The interface

receives screen coordinates and mouse commands from the video professor. User

config- uration parameters, e.g., pointer sensitivity or gesture thresholds, are sent to

the video processor. The design of the video processor enables researchers and de-

velopers to replace face and facial landmark recognition models, change which facial
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feature to track, or add gestures to enhance interaction functionality. Components

shown in yellow in Fig.2·3 can be easily exchanged, components in orange provide the

backbone of the system. In the following subsections, we discuss these components

in detail.

Enabling Modularity

CameraMouseAI employs a modular architecture that supports flexible integration of

facial landmark detection and tracking models. This design facilitates easy replace-

ment or enhancement of components to accommodate advancements in computer

vision technologies. The system’s robustness is underscored by its ability to adapt to

different facial feature tracking methods and detection models, ensuring continuous

innovation and improvement.

We here explain the developmental framework that enables this modularity. To

use a different facial landmark model, developers only need to modify a few lines

of code, as the mapping of facial landmarks is decoupled from the model output.

This flexibility extends to selecting which facial features to track by specifying the

appropriate index in the model’s output.

The video processor maintains a configuration object, trackerState, which stores

all user-defined settings and communicates them to the interface via HTTP. On the

interface side, visual components (Fig. 2·1 and 2·2) are implemented as modular ob-

jects using ElectronJS, a desktop framework leveraging HTML, CSS, and JavaScript.

This design simplifies customization and benefits from strong community support.

Adding new features requires minimal effort:

• In the interface, developers add a list item for the new clicking mechanism (e.g.,

Fig. 2·2) and replicate an existing component, such as a slider for thresholds.

• Add a corresponding field is added to the appConfig object, ensuring the up-
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dated settings are sent to the video processor.

• The video processor then handles the new mechanism with either a function to

detect clicks or a boolean flag for model-based triggers.

This modular design positions CameraMouseAI as a flexible, open-source platform

that encourages collaboration and continuous innovation in assistive technologies.

Researchers and developers can seamlessly integrate new AI models, enhancing system

capabilities to meet diverse user needs.

2.2.3 Mapping Visually Tracked Feature to Mouse Pointer Coordinate

A critical aspect of CameraMouseAI is its mapping mechanism, which translates the

coordinates of visually tracked facial features into precise mouse pointer movements

on the computer screen. Users can adjust the size and position of the ”operative win-

dow,” a focused area within the camera view that dictates mouse pointer movement,

thereby optimizing control and responsiveness. This means that the movement of the

mouse pointer is not absolute, but relative to the operative window. The edges of the

window correspond to the edges of the screen, meaning moving the mouse pointer to

an edge of the window will move the pointer to that edge of the screen.

Figure 2·4 provides a visual illustration of our approach. To map the tracked

facial feature coordinates (cx, cy) from the camera view to mouse pointer coordinates

(sx, sy) on the computer screen, we address two key challenges: 1. The camera view

and screen dimensions (cdimx , cdimy) and (sdimx , sdimy) differ in resolution and aspect

ratio. 2. Users cannot move facial features across the entire camera view naturally;

instead, movement is concentrated within a central operative window (Fig. ??(a)).

The operative window, adjustable via the user interface (”sensitivity” in Fig. 2·2(b)),

defines a smaller subregion (odimx , odimy) centered in the camera view. Reducing its

dimensions proportionally decreases physical movement required to control the mouse
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across the screen.

The mapping process (Fig. 2·4) involves three steps:

1. Normalize Camera Coordinates: Convert the pixel coordinate (cx, cy) into

a ratio within the camera view:

(crx , cry) =

(
cx

cdimx

,
cy

cdimy

)
, crx , cry ∈ [0, 1]. (2.1)

2. Scale to Operative Window: Map the normalized coordinates to screen

ratios (srx , sry) using a scaling function:

Scale(crx) =



0 crx ≤ 0.5− odimx

2cdimx

1 crx ≥ 0.5 +
odimx

2cdimx

0.5− 0.5−crx
odimx
cdimx

otherwise.

(2.2)

Points outside the operative window are mapped to the screen boundaries, while

points inside are scaled proportionally.

3. Convert to Screen Coordinates: Finally, compute the mouse pointer coor-

dinates (sx, sy):

(sx, sy) = (srx · sdimx , sry · sdimy). (2.3)

This approach ensures smooth and precise mapping of facial movements to screen

interactions while minimizing unnecessary physical effort for users.

2.2.4 Video Processor

The Video Processor component integrates real-time face detection and facial land-

mark identification using a MobileNetV2-inspired convolutional neural network pro-

vided by Mediapipe (Lugaresi et al., 2019), specifically modified for real-time usage.
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Given a video frame, the model predicts 478 facial features, ranging from the eye-

brows to the chin. CameraMouseAI’s Video Processor specifically tracks features

around the nostrils to determine mouse pointer coordinates accurately. Unlike tra-

ditional methods that directly translate facial landmark locations into mouse move-

ments, CameraMouseAI combines feature detection with template-based tracking for

smoother and more efficient pointer control. Automatic re-initialization mechanisms

ensure tracking continuity even during fast movements or occlusions. The model also

outputs predictions on facial expressions, called ”blendshapes.” These are extensive,

ranging from mouth opening to winking. CameraMouseAI uses these ”blendshapes”

from the model along with additional facial landmark processing to determine whether

a gesture has been made.

Tracking of Facial Feature

When the facial landmarks are detected, a square is drawn around the location of

the midpoint of the nostrils. A sub-image within this square is cropped and used as

a ”template” for tracking the position of the nostrils in the subsequent frame. The

area is chosen because the nostrils provide distinctive features which present notable

changes in intensity, leading to improved performance in template-based tracking.

Additionally, the shape of the nostrils remains relatively stable compared to other

facial features, such as the mouth, which can vary significantly especially during

speech or expressions, ensuring consistency of the template. We selected nostrils

as the feature to be tracked also because we considered the perspective of a user

interfacing with the computer – nostrils offer the user an intuitive and natural point

of reference, given the human tendency to utilize the nose for pointing and indicating

direction.

Our method searches for the nostril sub-image in the current video frame within a

”search window” centered at the position of the sub-image in the previous frame. The
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template is successively shifted through this search window and correlated with the

underlying sub-images. The normalized correlation coefficient between the template

T and the sub-image S in the search window is computed as

R(T, S) =

∑
x,y (T (x, y)− µT ) · (S(x, y)− µS)

nσTσS

, (2.4)

where µT and σT are the mean and standard deviation of all pixels in the template,

and µS and σS are the mean and standard deviation of all pixels in the sub-image.

n is the number of pixels in the template and the sub-image. The sub-image with

the highest correlation coefficient is determined as the tracked feature in the current

frame. The location of this sub-image is mapped to the actual mouse location on the

screen. In addition, we update the template using the sub-image for tracking in the

next frame.

2.2.5 Clicking Mechanisms: Dwell Time and Facial Gestures

There are three ways to click using CameraMouseAI: dwell time, opening mouth

and raising eyebrows. Dwell time is a classic interaction technique where a click is

administered when the mouse pointer stays in the same approximate location for a

set amount of time (Feng et al., 2021). That time can be customized (Figure 2·2).

The nature of dwell time requires rest areas on the screen, otherwise everywhere

the user looks can be clicked (Jacob, 1990). Gestures do not have this problem,

and thus offer more control. We have implemented two gestures for issuing mouse

commands, mouth-opening and eyebrow-raising, and provide a choice for the user

in the CameraMouseAI GUI (Fig. ??(b)). Since everybody’s mouth and eyebrows

sizes, and distance to the screen could be different, the application allows the user

to change the threshold for gesture detection. So, if the user believes that they are

making enough effort in making the gesture but the application is not issuing clicks,
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they can lower the threshold. Any of the three can set to left, right and double clicks.

CameraMouseAI recognizes a user’s facial gestures based on MediaPipe’s real-time

facial gesture detector (Lugaresi et al., 2019). The detector identifies the occurrence

and intensity of 52 facial gestures based on a 3-dimensional face mesh model.

2.3 KeyGlide: No-Click, Low-Cognitive-Load Text Input

During our experiments and user studies, we found it challenging to use CameraMouseAI

with on-screen keyboards, as it required high precision even for users without disabil-

ities. Therefore, we developed KeyGlide, a no-click text input interface that enables

typing with minimal accuracy. The user selects the letter group first, then the letter,

by moving the mouse pointer into an area at the right time as the system cycles

through the letters and groups. Typing is further boosted by word prediction, com-

pletion and spell check. This low-cognitive-load design ensures users can input text

accurately with limited precision in movements.

The layout consists of a central letter grid, a rest area, a word prediction section,

and control buttons. The letter grid organizes the alphabet into groups, such as

“A-D” or “E-H,” allowing users to quickly navigate to specific clusters. Adjacent

to the grid, the rest area serves as a neutral space for pausing input, helping users

avoid accidental selections. Above the grid, the word prediction section dynamically

suggests words based on typed letters, enabling faster input. Control buttons at the

top of the interface, including options like Save, Delete, Copy, and Clear All, provide

essential text management functionality.

To type, users navigate their mouse pointer or motion controller to the into the

’key area’ (left side) of the interface, at the right time. Once inside the group, letters

are highlighted sequentially, allowing the user to select the intended letter by moving

back into the same area. So, to pick the letter ’F’, the user would wait till the orange
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band reaches the second row in the key area, move into that area, move back into

the rest area. Then, the user would wait till the letter ’F’ is highlighted, and move

back into the key area to pick the letter. The prediction feature further accelerates

typing by allowing users to select suggested words instead of typing each letter. This

intuitive design minimizes effort and cognitive load, making KeyGlide effective for

users with limited motor function.

Note that the two applications (CameraMouseAI and KeyGlide) do not have to

be used together. Users can opt to use KeyGlide with any other mouse-replacement

interface, or a physical device like a roller mouse.

2.4 User Studies

Two studies were conducted: one evaluating the CameraMouseAI interface, and one

evaluating the KeyGlide text input interface. In the CameraMouseAI study, all users

achieved near-100% accuracy in a target selection task and success in navigating the

web in a browser.

2.4.1 CameraMouseAI Study

Twelve college students without disabilities and four individuals with advanced mul-

tiple sclerosis tested CameraMouseAI, performing a multi-directional target selection

and web browsing tasks.

Target Selection

The target selection task involved selecting 10 rectangular targets arranged in a cir-

cular manner (see Figure 2·6), deliberately numbered to make the user move across

the circle center from target to target. Targets disappeared once clicked. Each user

without a disability completed 5 blocks for each of the three clicking mechanism, re-

sulting in 15 blocks per user. This task measured how many targets were clicked, the
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time to move to a target (ballistic time), the time to select the target (select time),

and the overall time to complete the task. Ballistic time refers to the time taken

for the initial movement towards a target, and selection time is the time required to

finalize the selection of a target once inside the target area.

Every user without a disability was able to successfully complete five blocks of

the target selection task for each clicking mechanism, except two that were not able

to use the eyebrow raise gesture due to low contrast around their eyebrows. Users

demonstrated 100% accuracy in selecting targets in the specified order. The total,

ballistic, and selection times are shown in Figure 2·7. Each clicking mechanism exhib-

ited comparable completion times, showing that the facial gestures were at least as

effective as the traditional dwell time technique. Analysis of the ballistic and selection

times showed higher average ballistic times and a larger range of selection times for

the dwell time mechanism. This was due to accidental clicks, which were predictably

frequent with the dwell time mechanism, but not with the facial gestures. Facial ges-

tures not only reduced the total completion time but also exhibited a smaller range

in ballistic and selection times, indicating greater consistency across users. Notably

when it comes to selection time, performed the best, achieving a median selection

time of approximately 0.8 seconds with minimal spread, suggesting its efficacy as a

reliable alternative for target selection. This highlights the potential of facial gestures

to enhance accessibility tools for individuals with motor impairments.

Overall, the eyebrow raise gesture proved to be the most stable across all metrics

as evidenced by the low means and small range of time metrics.

While our experiments with individuals with severe motor impairments were less

structured than traditional user studies, this was an intentional decision. Working

with participants who face significant motor challenges requires flexibility to accom-

modate their needs and ensure their comfort during the testing process. Instead of
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Table 2.1: Summary of target selection task with users with motor
impairments. ”Block” refers to a successfully clicking on all targets;
*7/10 targets on one block; **8/10 targets.

Dwell Time Open Mouth Raise Eyebrows
User 1 3 blocks 2 blocks 2 blocks
User 2 3 blocks* 3 blocks 0 blocks
User 3 2 blocks 1 block** 2 blocks
User 4 2 blocks 5 blocks 2 blocks

adhering strictly to a predefined protocol, we focused on observing how participants

interacted with CameraMouseAI in real-world scenarios. The numbers of experimen-

tal blocks users with advanced multiple sclerosis were able to perform with the three

selection mechanisms are reported in Table 2.1. In all cases but 2, the users were able

to click on all 10 targets, achieving a near 100% success rate.

The target selection results for users with motor impairments showed promising

performance, with participants achieving largely consistent performance across blocks,

with notable improvement in certain cases (Fig. 2·8). Dwell-time again emerged as the

most successful clicking method across participants, with faster selection and ballistic

times compared to the open-mouth and eyebrow gestures. Performance variability

across participants highlighted individual differences in motor control and learning

rates. For instance, User 1 demonstrated some improvement in selection time, while

User 2 showed fluctuations likely due to fatigue or adjustment to the task. These

results underscore the importance of customizable sensitivity and gesture thresholds

to accommodate diverse user abilities.

One user was not able to use the eyebrow raise gesture due to their motor im-

pairment and facial attributes (low contrast between eyebrows and the rest of the

face).
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Table 2.2: Summary of target selection task with randomized ar-
rangement with users with disabilities. ”Block” refers to a successfully
clicking on all targets.

Dwell Time Open Mouth Raise Eyebrows
User 4 2 blocks 5 blocks 2 blocks
User 2 3 blocks 2 blocks 2 blocks
User 3 6 blocks 2 blocks 0 blocks

Adaptation to Randomized Tasks

To test adaptability, we introduced a randomized rotation of target arrangements

for users with motor impairments, randomly rotating the target arrangement after

every block while keeping the relative positioning the same. We show how many

blocks each of the three participants successfully completed in this study in Table 2.2

and the (normalized) progression of ballistic and selection time at every block in

Fig. 2·9. Despite the change in target positioning, participants showed comparable

performance to the fixed-arrangement task (Fig. 2·8). The average time to complete

a block remained largely stable across gestures and successive blocks. Notably, User 4

showed remarkable improvement in times while using dwell time, and User 2 showed

consistency in successive blocks while using the open mouth gesture.

These results suggests that users can successfully generalize their learned interac-

tion patterns to new spatial arrangements, highlighting the robustness of the Camer-

aMouseAI interface.

Movement patterns: Overshooting

A recurring trend of users with motion impairments was overshooting targets upon

the initial approach and then readjusting to move back into the target to click. This

overshooting pattern is typical among people with multiple sclerosis (Nij Bijvank

et al., 2022). In our experiments, it happened with targets at the vertical extremities

of the screen (and not for the other targets).
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For targets at the top of the screen, instead of entering the target from the bottom

(as is the natural approach), the mouse pointer would enter from the top. Vice versa,

for the targets at the bottom of the screen, the user’s mouse pointer would enter the

target from the bottom instead of the top.

We illustrate examples of this phenomenon for one of the users with motor im-

pairments in Figure 2·10.

Browser Navigation Task

The browser task involved navigating through seven pages on Wikipedia, starting

from the computer mouse page

https://en.wikipedia.org/wiki/

Computer mouse. The users were asked to click on hyperlinks, buttons, move from one

side of the browser window to the other, and scroll. To scroll, users clicked on the

scroll bar. Four of the seven browser navigation tasks are shown in Fig. 2·11. Since

some of the users with multiple sclerosis also had visual impairments, we provided

visual aids. In particular, we increased the resolution of the web page to 200% and

installed the Custom Scroll Bar extension of Google Chrome (Branton, 2024), which

allowed us to increase the contrast around the scroll bar.

The timing results for the browser tasks with users without disabilities for each

clicking mechanism are summarized in Figure 2·12. The mean time to complete the

browser task, which involved navigating through seven web pages, had a range from

40 s to under 60 s, with dwell time clicking being the fastest. Three of the four users

with MS were able to complete the browser task successfully at least twice for each

gesture.
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Phrase to be Written User SD Time (sec) Predictions
HAPPY TO SEE YOU User 1 4 177 2
GLAD YOU COULD VISIT User 1 3 269 3
I APPRECIATE YOUR TIME User 2 6 608 2
ITS A GOOD DAY User 2 0 174 3
JOIN ME FOR LUNCH User 2 3 502 2
KILL BILL User 3 1 172 0
CALL ME WHEN YOU CAN User 3 1 323 3
I LOVE TALKING WITH YOU User 3 0 297 2
GLAD YOU COULD VISIT User 3 0 146 4

Table 2.3: Performance metrics for KeyGlide user study. Users were
tasked to input different phrases of 3-5 words, and metrics such as
difference from the correct string (String Distance), deletions, and pre-
dictions used are shown.

2.4.2 KeyGlide Study

The KeyGlide user study involved three participants with severe motor impairments,

testing the system across a series of phrases designed to simulate real-world text input

scenarios. Two of the users used CameraMouseAI and one used a roller mouse. Part of

the study was to show that KeyGlide does not need to be used with CameraMouseAI,

but can be used with any other mouse-replacement interface, or even a physical device

like a roller mouse.

They were tasked to input different phrases of 3-5 words, which included phrases

like ”HAPPY TO SEE YOU” and ”GLAD YOU COULD VISIT”. These phrases

are phrases that people are likely to use in daily communication with friends and

family. The results highlight the potential of KeyGlide to facilitate accesible text

input. Results are summarized in 2.3.

Performance varied between users based on their motor abilities and prior ex-

perience with assistive devices. User 1, a CameraMouse user, demonstrated steady

performance with an average WPM (words per minute) of 4.6. Prediction features

contributed significantly to this user’s efficiency, with examples such as completing

the word “GLAD” in 43 seconds—a substantial improvement over non-predicted in-
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put times. MSD values for User 1 ranged between 3 and 4, reflecting moderate errors

that were easily corrected using prediction. In contrast, User 2, who faced more severe

impairments, achieved the lowest typing speeds, with an average WPM of 2.6. While

prediction improved their WPM to 4.2, detection inconsistencies and slower reaction

times limited its full effectiveness. User 3, a roller mouse user, achieved the highest

performance, with an average WPM of 5.33 and nearly perfect accuracy (MSD val-

ues of 0-1) across most phrases. They completed the phrases efficiently, like phrase

“GLAD YOU COULD VISIT” in 146 seconds without any mistakes.

The impact of prediction was most pronounced in terms of efficiency. Prediction

also facilitated more consistent typing speeds across phrases, reducing user effort and

increasing task completion rates. Using prediction, typing speed improved by an av-

erage of 103% letters per second (LPS), effectively doubling users’ typing efficiency.

While this is promising, the small sample size of three users limits the generalizability

of these findings. A larger, more diverse sample is needed to determine the robustness

of this effect across different users and impairments. Prediction’s effectiveness varied

across participants. While Users 1 and 3 demonstrated significant benefits from pre-

diction, User 2 struggled due to input inconsistencies caused by motor impairments.

This disparity highlights the need for further development to make prediction features

more adaptable and accessible to users with varying levels of mobility.

Error patterns revealed common challenges, including insertions, deletions, and

substitutions. Insertions often occurred during pauses or when re-entering selection

zones, as seen in outputs like “GGLAD” instead of “GLAD.” Participants also spent

a lot of time simply waiting for the system to get to the group/letter they wanted

to select. Often, they thought they had to move towards the letter they wanted to

select, when in fact they simply had to move into an area.

While these results are promising, the challenges faced by User 2 highlight op-
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portunities for improvement in system responsiveness and adaptability. With en-

hancements in detection and error correction mechanisms, KeyGlide could become

a transformative solution for accessible text input, bridging critical gaps in assistive

technology for individuals with diverse motor abilities.

2.5 Conclusion and Future Work

In this paper, I introduced two new assistive platforms, CameraMouseAI and KeyGlide,

designed to empower individuals with severe motor impairments by enabling access

to personal devices through innovative, customizable interfaces. CameraMouseAI

provides a head-controlled mouse replacement interface, extending traditional mouse

replacement systems by integrating deep-learned facial landmark detection with a

template-based tracking mechanism. This allows users to select gestures tailored to

their specific motor abilities, offering an alternative to the conventional dwell-time

selection mechanism. Similarly, KeyGlide reimagines text input by introducing a

purely motion-based interface that minimizes cognitive load and eliminates the need

for precise movements or clicks. Through its prediction-enhanced keyboard, KeyGlide

enables users to enter text efficiently, with a design focused on adaptability and ac-

cessibility.

The empirical evaluation of both systems underscores their potential to transform

how users with motor impairments interact with digital content. CameraMouseAI was

tested with both individuals with and without motor impairments, demonstrating

its flexibility and usability across varied user profiles. Participants appreciated its

gesture-based customization options and the precise control it offered over the mouse

pointer. However, pilot studies revealed limitations in text entry using generic on-

screen keyboards, where closely packed keys hindered dependable selection. Building

on these findings, we developed KeyGlide to address this gap, introducing a motion-
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based keyboard tailored to the needs of users with motor impairments. KeyGlide’s

prediction feature significantly improved typing efficiency, as demonstrated in our

user studies, which showed marked reductions in typing effort and time, particularly

for longer phrases. The results highlight KeyGlide’s potential as an accessible text

input solution, capable of adapting to diverse user abilities.

The broader significance of CameraMouseAI and KeyGlide lies in their shared

mission to provide user-centric, modular assistive technologies that prioritize acces-

sibility and adaptability. Both platforms lay a foundation for future advancements

in assistive technology, spanning fields such as human-computer interaction, artificial

intelligence, and rehabilitation sciences. Their modular designs not only ensure flex-

ibility for users but also offer researchers a platform for further innovation. Future

research could explore integrating more advanced machine learning models, such as

personalized calibration mechanisms that adapt to individual user movement patterns

and capabilities, to enhance usability further. Additionally, incorporating domain-

specific computer vision techniques could improve the precision and responsiveness

of both interfaces.

Looking ahead, we see CameraMouseAI and KeyGlide not only as practical tools

for improving accessibility but also as platforms for interdisciplinary research. By

making these systems open source and modular, we encourage the research community

to build upon this work, exploring new algorithms and interaction techniques to

address the diverse and evolving needs of users with motor impairments. Together,

these systems represent a significant step forward in assistive technology, paving the

way for more inclusive and empowering digital interactions.
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Figure 2·2: Graphical User Interface of the CameraMouseAI: Settings
tab where the user can customize parameters of the application.
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Figure 2·3: Architecture of the CameraMouseAI: The interface and
the video processor are separate components that can be replaced or
upgraded independently.

Figure 2·4: Mapping from the camera view to the computer screen.
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Figure 2·5: KeyGlide: No-click text input interface. User selects the
letter group first, then the letter, by moving the mouse pointer into
an area at the right time as the system cycles through the letters and
groups.

Figure 2·6: First study target arrangement of the testing interface:
The user was asked to click on all targets in order. Targets disappear
once clicked.
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Figure 2·7: Experimental total, ballistic and selection time results
with people without disabilities on the target selection task. Each box
is defined by the first and third quartile of the data, shows the median
time in red, and has whiskers that indicate the shortest and longest
measured times.

Figure 2·8: Normalized progression of ballistic time, and selection
time in experiments involving with participants with motor impair-
ments. User 2 was not able to use the ”Eyebrow Raise” gesture due to
physical constraints.

Figure 2·9: Normalized progression of ballistic time and selection time
with randomized target arrangement in experiments with participants
with motor impairments.
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Figure 2·10: Mouse pointer entry points (red markers) into targets
in extreme vertical positions for a user with motion impairments (all
blocks of study 1). The user worked with the default target arrange-
ment (Fig. 2·6). The user was asked to move the mouse pointer from
target 4 at the top left of the target circle to target 5 at the bottom
right of the target circle. The markers show that the user tended to
enter target 5 mostly from the bottom. Similarly, target 7, which is
located at the bottom left of the target circle, has entry points mostly
on the bottom. Notably, for both targets 5 and 7, every side has entry
points except the top, which is the natural direction of entry. Target 8,
which is at the top right of the target circle, exclusively has entry points
at its top, indicating that the user must have overshot target 8 during
the ballistic movement from target 7 to 8.

Figure 2·11: Four of the seven steps of the browser navigation
task: clicking on the links ”pointing device” and ”A computer mouse,”
pulling down a menu and clicking on the link ”About Wikipedia,” and
clicking on the scroll bar.
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Figure 2·12: The time (average and standard deviation) that users
without disabilities took to complete browser and typing tasks.
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Chapter 3

Driving student engagement, learning and

course development using personalized AI

assistants.

3.1 Introduction

In an era where artificial intelligence is increasingly integrated into diverse sectors,

education remains one of the most promising fields for conversational AI applica-

tions (Holmes and Tuomi, 2022). Higher education demands a nuanced approach due

to the vast and diverse nature of its content, spanning general knowledge to highly

specialized technical information. Traditional methods of student support, includ-

ing office hours, forums, and tutoring, have proven valuable; however, they lack the

scalability and real-time responsiveness that today’s students expect. The need for

advanced, personalized AI systems to bridge these gaps has never been more pressing,

especially as universities worldwide continue to expand digital and hybrid learning

models. An always-on, always-available assistant can provide real-time support to

students, enabling them to get immediate answers to their questions and receive per-

sonalized feedback on their work. It could thus reduce the load on instructors and

teaching assistants, enabling them to focus on more complex questions that could

require human interaction. There have been attempts to integrate conversational as-

sistants into learning environments (Hwang and Chang, 2021; Goel and Joyner, 2017;

Hussain, 2017). With the advent of newer frontier conversational models (LLMs and
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LMMs), and agentic frameworks, there is an opportunity to create more sophisticated

assistants that can provide more personalized and helpful support to students.

Large language models (LLMs) and Large Multimodal Models (LMMs) are demon-

strating incredible potential to function as assistants in many domains and applica-

tions. Through pre-training on massive internet-scale datasets they exhibit the capa-

bility to answer questions and solve problems. In some cases, they can approach or

exceed human capability on the same task. Through supervised fine-tuning they can

better align to users’ expectations of helpful answers and reduce toxicity and bias.

Through Retrieval Augmented Generation (RAG) techniques they base their answers

and cite specific content from a knowledge base supplied by the developers. More

recently, agentic architectures enable them to be used to perform more complex tasks

such as multi-step planning, decision-making, and self-correction. There is a growing

software ecosystem of products and services in support of these techniques. As indi-

cated by the number of papers published on these topics, as well as the number of

platforms and products being developed in industry, research in this area is evolving

very rapidly.

This chapter discusses contributions to Edubotics.ai, an open-source library of

tools and modules for building and deploying multi-purpose AI assistants. These

assistants offer 24/7 support to students, providing them with immediate help and

personalized feedback on their work. They can also be used to support instructors

and teaching assistants, who can monitor the assistant’s interactions with students to

identify areas where additional support is needed. Edubotics.ai is designed to redefine

student engagement and learning support by deploying conversational AI assistants

tailored to academic contexts. In particular, three contributions are discussed: intel-

ligent data extraction, advanced retrieval of technical course content, and seamless

adaptation to different courses. Intelligent data extraction preserves the semantic

https://github.com/edubotics-ai
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structure and integrity of source materials regardless of the format, ensuring that

responses not only match the original documents in content but also reflect them ac-

curately in context. This high-quality extraction process is fundamental to providing

students with information that feels as though it’s directly pulled from the course

materials, enhancing the assistant’s credibility and effectiveness in supporting diverse

learning needs. Advanced Retrieval Augmented Generation (RAG) techniques enable

assistants to flexibly engage with a broad spectrum of course material, from assign-

ments and lectures to complex technical documentation. These two are integral to

seamless adaptation to different courses by the same platform. Together, they are

key to the platform’s ability to create an adaptable, course-specific AI support system

and to foster meaningful, personalized interactions that deepen student understand-

ing and engagement with their coursework.

An early prototype of the Edubotics.ai platform has been piloted this Fall 2024

semester in DS701: Master’s Tools for Data Science at Boston University. Future

work will focus on the integration of the intelligent data extraction and retrieval tech-

niques with more sophisticated agentic architectures to enable more fine-grained and

context-aware interactions, like query rewriting and clarification questions, Socratic

assistance, and multi-step planning.

3.2 Contributions to Edubotics.ai

3.2.1 Intelligent Data Extraction

Today’s courses are increasingly digital and use a variety of formats for course mate-

rials (Haleem et al., 2022). These include PDFs, Word documents, HTML pages and

video content (like lecture recordings). Each may include complex visual elements,

like graphs, charts and tables. Even pure text can be formatted in a variety of ways,

including Markdown, LaTeX, code, and more. University-level course material, espe-
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cially in STEM fields, It is important that the AI assistant is able to understand and

extract information from all of these different formats, and preserve their semantic

structure and integrity. This section discusses the implementation of parsers for the

different formats.

The intelligent data extraction system for Edubotics.ai processes various academic

content formats into a structured, accessible representation. A custom PDF parser

converts each page into an image, processed by the GPT4o model. This extracts

textual and visual content, converting it into Markdown format. Mathematical for-

mulas are accurately extracted and formatted in LaTeX. Through specific prompting

instructors can instruct the system to extract visual elements like graphs, charts, and

figures, and replace them with detailed descriptions, enabling comprehensive query

responses. This directly affects the quality of the responses, as shown in Figure 3·1.

The data extraction pipeline also now supports Markdown files, Jupyter note-

books, and entire GitHub repositories. This broadens compatibility with educational

resources, making it adaptable to various courses and materials.

Finally, metadata for each document is automatically generated, aided by LLMs.

When processing course materials, the pipeline retrieves metadata directly from the

source, such as the course website. For instance, when an assignment is encountered,

the system identifies relevant metadata: assignment title, numbering, release date,

and due date. This metadata is then appended to the document before it is passed

into the vector store for later retrieval. By embedding this additional layer of struc-

tured information, the system ensures that the conversational assistant can provide

contextually rich and specific responses.

This combination of automated content parsing, multi-format compatibility, and

metadata extraction creates a robust and scalable foundation for data processing,

enabling Edubotics.ai to support diverse content types.
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Figure 3·1: Example of an improved, more grounded response from
the assistant due the correct extraction of LaTeX equations from a
PDF. The source PDF (top) shows how the relevant math equation is
written in the lecture material. The old response (middle), does give
the correct answer, but in it the formula does not match the formula in
the source, because math equations were not captured properly. After
they were processed by the LLM-powered pipeline, the new response
(bottom) follows the same mathematical notation as the original source
PDF.

3.2.2 Effective Retrieval of Technical Course Content

Retrieval Augmented Generation (RAG) is a technique that enables an AI assistant

to retrieve and use information from a knowledge base of documents (Lewis et al.,
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2021). Document content is embedded using a large language model and stored in

a vector database. When a user asks a question, the question is embedded and the

most semantically similar texts (document chunks) to that question are retrieved.

The content of these chunks is then added into the prompt to the LLM (in addition

to the user’s question) to provide necessary context in the generation of a response.

For example, if the user asks a question about the earnings of a stock XXX, the AI

assistant can retrieve the document that mentions the earnings of stock XXX and

reference it in the generation of a response. Today’s embeddings models are very

effective at capturing the semantic meaning of words, and so the correct passage can

be found even if the user’s question does not use the exact same wording.

What we found is that the current prototype struggles with the retrieval of certain

content, particularly with assignments. In the case of this class, the assignments are

written by different people and do not follow a consistent format, like titling and

annotation of equations. The course also has course website pages for assignments,

which confuses the retrieval system. I set out to set up a RAG system that can handle

a wide variety of course content without the need to impose a strict format.

A RAG-system generally consists of four main components: document chunks,

embedding, vectorization, and retrieval. Document chunks refer to the process of di-

viding large documents (our source content) into smaller, more manageable pieces for

processing. Embedding involves converting these chunks into dense vector representa-

tions that capture their semantic meaning. Vectorization is the process of converting

these embeddings into a format suitable for storage and querying. Finally, retrieval

is the process of searching for and returning the most relevant documents based on a

user’s query.

Experiments with different embedding models and vectorstores showed that the

difference in responses was trivial. OpenAI’s embeddings model ”text-embedding-3-
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large” consistently provided good responses. For the vectorstore, I picked FAISS, as

it is a fast and efficient vectorstore that is easy to set up.

I experimented with different chunk sizes, reranking, and the use of multiple vec-

torstores (MVS).

MVS is a technique that enables the assistant to dynamically route queries to the

most relevant vectorstore, improving precision by ensuring that retrieval focuses on

contextually appropriate content. Each content type is stored in a separate vector-

store, and the assistant is able to determine which vectorstore to use based on the

user’s query.This is an ’agentic’ approach, since the LLM assistant needs to make a

decision. In the case of DS701, there are four types of content: assignments, lecture

slides, discussions, and course website pages. If the student asks a question on an

assignment, the assistant knows to retrieve from the assignments vectorstore, nar-

rowing the scope of the retrieval and improving precision. The primary goal was to

assess the improvements provided by the MVS approach in both quantitative retrieval

performance and qualitative flexibility.

Combinations of these approaches were rigourously evaluated on a set of queries,

for which the most relevant (’golden’) chunks and documents were identified manually.

These queries ranged from asking about general lecture material, help on assignments

and course logistics, i.e. targeted at certain content types.

The naming of the scenarios reflects the configuration of the retrieval system,

combining key elements of chunk size, reranking, and the use of multiple vectorstores

(MVS). “OG” refers to the original setup with default chunk sizes (300 tokens) and a

single vectorstore, where all source content is stored. “C-1K” denote configurations

with document chunks of 1000 tokens. The number 1000 is chosen because it creates

a good balance between the number and size of document chunks. The suffix “R”

indicates the inclusion of a reranking step to refine retrieved results. Cohere’s rerank-
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Metric OG OG-R OG-MVS OG-MVS-R C-1K C-1K-R C-1K-MVS C-1K-MVS-R
Success@1 0.233 0.233 0.067 0.200 0.467 0.467 0.567 0.633
Success@3 0.433 0.433 0.233 0.267 0.733 0.733 0.733 0.733
Success@5 0.567 0.567 0.233 0.267 0.767 0.767 0.733 0.833
Recall@1 0.233 0.233 0.067 0.200 0.467 0.467 0.567 0.633
Recall@3 0.200 0.200 0.133 0.133 0.452 0.452 0.435 0.435
Recall@5 0.280 0.280 0.147 0.160 0.516 0.516 0.484 0.548

Table 3.1: Comparison of retrieval performance metrics for different
configurations of the retrieval system, on a manually curated set of
queries. Success@n is the percentage of queries for which at least one
relevant (’golden’) chunk is retrieved within the top n results. Recall@k
is the average percentage of relevant (’golden’) chunks (out of all rel-
evant chunks for a query) that are retrieved within the top k results.
The best performing configuration in each row is highlighted in bold.

v3.5 (Sun et al., 2023) was used for reranking. After the documents are retrieved,

they are ranked by the embedding model and the vectostore. A reranking step is used

to refine the ranking of the documents according to the user’s query.

“MVS” specifies the use of multiple vectorstores, with one dedicated to each con-

tent type (assignments, lecture slides, discussions, etc.), and “MVS-R” combines MVS

with reranking. Only documents that are of the same content type are put into the

same vectorstore. When a query is made, the assistant determines which vectorstore

to use based on the user’s query. If the question is about an assignment, the assistant

will retrieve from the assignments vectorstore.

Results of the evaluation are shown in Table 3.1. Success@k is the percentage of

queries for which at least one relevant (’golden’) chunk is retrieved within the top

k results. Recall@k is the average percentage of relevant (’golden’) chunks (out of

all relevant chunks for a query) that are retrieved within the top k results. Success

and recall metrics were calculated across scenarios, with notable improvements ob-

served when using MVS combined with reranking. In particular, the C-1K-MVS-R

configuration, which employed 1000-token chunks, reranking, and MVS, achieved the

highest performance across several metrics. Success@1 improved significantly com-

pared to baseline configurations, reaching 0.633—a nearly threefold increase over the
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original single- retriever setup (OG, 0.233). Recall@5, which measures the model’s

ability to retrieve all relevant golden chunks within the top five results, demonstrated

the most substantial improvement, rising to 0.548 from the baseline 0.280.

The agentic nature of MVS provides the system with a scalable framework for

handling diverse and complex queries, through techniques like query rewriting, and

interventions like query clarification. Integrating more agents could enable these

interactions and more, like multi-step planning for Socratic assistance, where the

system leads the student towards the correct answer through a series of questions.

3.3 Conclusion

In this chapter, I have described my contributions to Edubotics.ai, an open-source

library of tools and modules for building and deploying multi-purpose AI assistants. I

developed a data extraction pipeline that can process a wide variety of course content

formats into a structured, accessible representation. Visual elements from formats

like complex PDFs are properly processed, enabling more grounded and context-

aware responses. The pipeline also extracts metadata from the source content, which

is used to create more context-aware responses. These are key to the assistant’s

credibility and effectiveness in supporting the source content.

I also created a retrieval system (MVS) that showed vastly improved accuracy

of document retrieval for context-requiring and technical queries, like assignments.

The agentic nature of the MVS approach also supports the addition of new content

categories without retraining or major reconfiguration, making it highly scalable and

adaptable. This ensures the system remains robust as course materials evolve, offer-

ing long-term value. Finally, combining MVS with reranking refined results further,

prioritizing the most relevant chunks within the returned documents and reducing

the need for users to sift through irrelevant or less important content.
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These results and discussions highlight the potential of LLM-powered pipeilnes

and agentic orchestration in bridging gaps between disparate content types and align-

ing retrieval outputs with user intent. By integrating both quantitative metrics and

qualitative insights, the chapter showed the value of agentic implementations in edu-

cational contexts.



40

Chapter 4

Towards a Foundational Model for

Analyzing Herbarium Specimens

4.1 Introduction

Herbaria specimens are a vital resource for botanical research, specifically for studying

plant morphology and phenology over space and time (Davis et al., 2015). Growing

global awareness of climate change has sparked renewed interest in using herbarium-

derived data to study climate change. However, the manual curation of herbarium

specimens is a time-consuming and labor-intensive process, limiting the scalability of

traditional methods. A significant challenge remains in mislabeled specimens, which

can lead to incorrect conclusions in research (Fujii, 2019).

This has led to the development of highly accurate, automated image analysis

techniques powered by deep learning and artificial intelligence.

Deep learning approaches for herbarium classification range from traditional image

classification using Convolutional Neural Networks (CNNs) (Šulc and Matas, 2017;

Younis et al., 2018), a CNN, called YOLO (”You Only Look Once”), previously used

for object detection (Redmon et al., 2016), now adapted for plant part detection

(Thompson et al., 2023), to a recent method (Stevens et al., 2024) that applies CLIP

(”Contrastive Language Image Pretraining”) (Radford et al., 2021), to plant species

classification. . Given the widespread adoption of CNNs, YOLO, and CLIP models

in computer vision and their extensive documentation across the academic literature
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and online resources, this section will focus on their application to plant classification

rather than providing an in-depth technical overview over these general models.

Unlike traditional image classification tasks, fine-grained Visual Classification

(FGVC) focuses on distinguishing among a high number (over a thousand) of cat-

egories - species in this case - that often exhibit only subtle visual differences (Xu

et al., 2023). This challenge is particularly relevant in herbaria, where dried, pressed

specimens present unique visual complexities and degradation over time (Swain and

Chakraborty, 2024). Images of preserved herbarium specimens also exhibit a high de-

gree of similarity, making FGVC a critical field within computational botany, offering

powerful tools to support taxonomy, phenology, and biodiversity research.

Research in the area has accelerated in recent years. (Shirai et al., 2022) developed

96.4% classification accuracy on over 2,000+ of Japanese herbarium species using the

popular Inception-ResNet-v2 model (Szegedy et al., 2016). However, 2,000 species is

a relatively small dataset. Kaggle competitions such as the FGVC9 (Hogan et al.,

2022; Park et al., 2024) in 2022 have also been organized to benchmark models on

the task of FGVC in the herbarium domain, using a dataset of over 1,000,000 images

of 15,501 unique species. The dominant types of models used were Swin-Transformer

(Liu et al., 2021b), DeiT (Touvron et al., 2021), and Meta-Transformers (Tan and Le,

2020). Top 5 performing teams were able to achieve F1 scores of at least 85% on the

test set. The sheer size of the models used in these competitions is also noteworthy

- parameter counts go up to the billions. While the results are significant, the model

weights were not made available publicly, and the training details are not extensively

documented.

Zero-shot classification refers to the ability of a model to identify categories or

classes that it has not explicitly seen during training. This is significant for large-

scale image classification tasks, where the sheer number of possible categories — such
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as biological species — may make it infeasible to gather labeled data for every class.

The ability of a model to generalize to new species is crucial for scalability. The

hierarchical nature of species names (’taxonomic names’) provide semantic informa-

tion that models can leverage for better generalization. To address this challenge,

BioCLIP (Stevens et al., 2024) adapted the CLIP (Radford et al., 2021) framework

to classify over 40,000 biological species, spanning plants, animals, and other organ-

isms. By leveraging CLIP’s text encoder, BioCLIP demonstrated that the model

inherently learns relationships between taxonomic labels, such as genus and species

hierarchies, in the biological domain. This capability allows the model to generalize

its understanding and classify species it has never seen before, enabling zero-shot pre-

dictions. BioCLIP achieved impressive results, with 91% zero-shot accuracy on the

PlantNet dataset (1081 species) and 38.6% on the Medicinal Leaf dataset (40 species

)(Royal Botanic Gardens and Domain Trust, 2024; Roopashree and Anitha, 2020)

While these results highlight the potential of zero-shot classification for large-scale

biological image recognition, they focus primarily on images of plants and animals

’in the wild’. Images of herbaria are much more homogenous - they involve the same

background and orientation all the time.

The focus of this chapter is to:

1. Attempt to reproduce the results of the top performing team in the FGVC9 2022

competition. The results of this fine-tuning are expected to serve as a strong

baseline for further explorations, such as with more specialized FGVC models.

Multiple training strategies are explored to find the most effective approach.

2. Further, inspired by the success of BioCLIP, this chapter explores the potential

of a hybrid model that combines the strengths of CLIP with the strengths

of SWIN-Transformer. I aim to investigate whether replacing CLIP’s Vision

Transformer (ViT) (Dosovitskiy et al., 2021) backbone with a FGVC-specific
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vision backbone would improve its performance and generalization on herbarium

species.

Another one of my contributions is a parallelized data collection pipeline, which

was used to collect over 5.5 million herbarium specimen images spanning over 20,000

species. These efforts are part of a larger vision to develop a collection of foundation

models for herbarium analysis, aimed at enabling botanists to recognize species from

images, analyze subtle visual differences, and access critical information about species

origin, location, migration, morphology, and more. This work takes incremental but

essential steps toward that goal, building the foundational blocks necessary for scaling

herbarium specimen classification and analysis.

At the end, the chapter proposes a novel conversational assistant for herbarium

specimen analysis, and discusses the potential of this approach to support the manual

curation process.

4.2 Contributions

4.2.1 Dataset

The dataset used in this experiment is the NAFlora-1M dataset (Hogan et al., 2022),

which contains over 1.2M images of 15,501 unique species. Each specimen includes

metadata like species name, taxonomy, and collector details. Designed for large-scale

fine-grained classification, the dataset highlights subtle interspecies variations, en-

abling advancements in biodiversity research and herbarium digitization. Exhibiting

a long-tailed distribution, the dataset is well-suited for addressing the challenges of

imbalanced distributions and class rarity.
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4.2.2 SWIN-Transformer

The SWIN (Shifted WINdow) Transformer is a hierarchical vision transformer that

processes images using shifted windows of varying sizes (Liu et al., 2021b). It contains

four transformer (Vaswani et al., 2017) blocks, each operating at a different resolu-

tion. Unlike traditional vision transformers that maintain a fixed resolution through-

out their layers, SWIN progressively merges image patches to create a hierarchical

representation. This design allows the model to efficiently process high-resolution

images while maintaining computational efficiency.

The key innovation of SWIN is its shifted window partitioning approach. In each

layer, the image is first divided into non-overlapping windows where self-attention is

computed locally. In subsequent layers, the window partition is shifted, allowing for

cross-window information exchange. This shifting mechanism enables the model to

capture both fine-grained local features and broader contextual information, which is

particularly crucial for fine-grained visual classification tasks.

SWIN’s architecture consists of several stages, each operating at a different reso-

lution. As the network deepens, adjacent patches are merged, reducing spatial resolu-

tion while increasing the channel dimension. This hierarchical design mirrors the fea-

ture pyramid commonly found in convolutional neural networks, enabling the model

to capture multi-scale features effectively. The computation of self-attention within

local windows, rather than globally, results in linear computational complexity with

respect to image size, making SWIN more scalable than traditional vision transform-

ers.

The model also incorporates relative position encoding within each window, al-

lowing it to better understand spatial relationships between patches. This localized

approach to position encoding, combined with the shifted window mechanism, helps

SWIN maintain translation invariance while being sensitive to local spatial structures
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- properties that are essential for identifying subtle morphological differences between

plant species in herbarium specimens.

The original SWIN-Transformer (Liu et al., 2021a) model weights are publicly

available, and the model was trained on popular datasets like ImageNet-1K (1,000

classes) and ImageNet-22K (21,841 classes) (Russakovsky et al., 2015). There are

multiple versions, including SWIN-Tiny, SWIN-Small, SWIN-Base, and SWIN-Large.

This following experiments will focus on the SWIN-Base model, as the smaller models

were found to underperform and finetuning the larger models was found to be resource

intensive, specifically memory.

4.2.3 CLIP

Traditional classification models are limited to predicting a fixed set of predefined

labels because they learn a direct mapping between images and those labels dur-

ing training (Stevens et al., 2024). This limitation prevents them from performing

zero-shot classification, where the goal is to identify categories the model has never

encountered before. Zero-shot classification is especially valuable in domains like

biological species recognition, where the sheer number of categories—such as plant

species—makes it infeasible to label data for every class. Herbarium labels are also

inherently hierarhical - or ’taxonomic’ organized into structured relationships, such as

genus, family, and order. This hierarchical nature introduces additional complexity

but also provides semantic relationships that models can leverage for better general-

ization.

CLIP (Contrastive Language-Image Pretraining), developed by OpenAI, addresses

this limitation by learning to associate images and textual descriptions based on their

similarity (Radford et al., 2021). CLIP is trained on a massive dataset of image-

caption pairs using two encoders: one for images and one for text. Through a process

called contrastive learning, the model is trained to increase the similarity between
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an image and its correct caption while decreasing the similarity between the image

and unrelated captions. This approach allows CLIP to learn rich visual and linguistic

patterns that generalize beyond its training data.

For example, during training, CLIP might be shown an image of a red fox alongside

the caption ’a red fox in the forest.’ The image encoder processes the image to capture

its visual features, while the text encoder processes the caption to capture its semantic

meaning. The model learns to associate (or increase the similarity between) this image

and caption pair. Over time, it develops the ability to generalize to new pairs, such

as associating the description ’a fox in the woods’ with visually similar images, even

if those images or descriptions were not in the training set.

In a zero-shot classification scenario, CLIP can be used to classify a completely

new image by comparing its similarity to a set of textual descriptions. For instance,

when presented with an image of a plant it has never seen before, CLIP can assess

the similarity between the image and a set of candidate labels, such as ’a leaf from a

maple tree’ or ’a leaf from an oak tree.’ The model selects the label with the highest

similarity to the image, accurately predicting the category (e.g., ’maple tree’) without

requiring labeled examples for that species during training. This ability to infer from

similarity makes CLIP a powerful tool for tasks with large, fine-grained taxonomies.

BioCLIP (Stevens et al., 2024) extends this framework to biological domains,

demonstrating that CLIP’s text encoder naturally learns hierarchical structures, such

as genus-species relationships, in taxonomic data. By leveraging the similarity be-

tween visual features and descriptive labels, BioCLIP enables zero-shot classification

for complex biological datasets. It has shown strong performance in large-scale tasks

like plant species recognition, providing a scalable solution for domains where collect-

ing labeled data is challenging. This makes models like CLIP and BioCLIP invaluable

for advancing research in areas such as herbarium specimen analysis.
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4.3 Experiments and Results

4.3.1 Recreating the FGVC9 2022 winning model

The finetuning conducted in this study was designed to attempt to recreate the results

of the top-performing team in the FGVC9 Kaggle competition, which achieved an ac-

curacy of 87.5%. Their approach utilized an ensemble of models including SWIN-Base

and SWIN-Large models, with training conducted on 8 NVIDIA A100 GPUs. Top

teams also employed more sophisticated training techniques, like including advanced

loss functions and extensive data augmentation methods. The present study deliber-

ately employed a more bare-bones methodology, focusing on more standard finetun-

ing techniques. This decision was made to establish a clear, reproducible baseline for

fine-grained herbarium classification and to better understand the capabilities of the

SWIN-Transformer without introducing additional complexities that could obscure

the analysis.

Due to resource constraints, this work focused on finetuning a single SWIN-Base

model using 4 NVIDIA L40 GPUs. Despite these limitations, the results reaffirm the

SWIN-Transformer’s effectiveness for fine-grained visual classification (FGVC) tasks

in the herbarium domain.

From here on, the original SWIN-Transformer trained on ImageNet-22K will be

referred to as SWIN-Pretrained. For the purposes of finetuning on the NAFlora-1M

dataset, the ImageNet-22k weights were used, and the model was modified to output

15,501 classes instead. A widely accepted approach to finetuning is to partially freeze

the weights of the pre-trained model, and only update the weights of the last few

layers. This allows the model to retain the knowledge it learned during pre-training

and adapt it to a new task (called downstream task). Multiple freezing strategies were

tested, including not freezing any layers. These finetuned SWIN models (starting from

SWIN-Pretrained) will be referred to as SWIN-Finetuned.
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Two following two approaches were found to be effective for SWIN-Finetuned:

• Unfreezing all layers, and updating the weights of all layers.

• Starting by unfreezing the last transformer block, then incrementally unfreezing

more layers as training progressed.

These will be referred to as SWIN-Finetuned-All and SWIN-Finetuned-Incremental,

respectively.

Model Accuracy F1 Score Epochs
SWIN-Finetuned-All 70.78% 70.60% 100
SWIN-Finetuned-Incremenetal 70.62% 70.44% 100

Table 4.1: Results of the SWIN-Transformer finetuning experiments.

Both models were finetuned using Hugging Face’s Transformers library. SWIN-

Finetuned-All was finetuned with a batch size of 512, while SWIN-Finetuned-Partial

was finetuned with a starting batch size of 128, which was decreased as training

progressed. SWIN-Finetuned-All was finetuned with a Cosine Annealing learning

rate scheduler, while SWIN-Finetuned-Partial was finetuned with a standard linear

learning rate scheduler and an AdamW optimizer, with a weight decay of 0.05. Both

models were finetuned with 4 NVIDIA L40S GPUs.

So far, both approaches have yielded an accuracy of 70% and an F1 score of 70%

on the test set.

These results, while lower than those reported by the Kaggle competition team,

were achieved using significantly fewer computational resources and a simpler single-

model approach, underscoring the potential of SWIN-Base to serve as a strong base-

line for FGVC tasks in the herbarium domain. The insights gained from this work

provide a stepping stone for future explorations into larger models or ensembles, such

as SWIN-Large, coupled with methods to fit these models into smaller GPU mem-
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ory like quantization (Jacob et al., 2018). These include integrating domain-specific

enhancements or leveraging recent advancements in foundational vision models.

Although the different finetuning approaches did not yield significant improve-

ments, they both validate the SWIN-Transformer as a highly capable model for fine-

grained herbarium classification tasks, setting the stage for further advancements in

FGVC methodologies.

By confirming SWIN’s strong performance and identifying its potential in the

herbarium domain, this study paves the way for future research to explore larger,

more specialized models. These could include multi-modal approaches, where SWIN

serves as a backbone for systems integrating text, images, and metadata to expand

the scope of herbarium specimen analysis. While this work provides a foundation,

the possibility of exceeding 70% accuracy and achieving state-of-the-art performance

will likely require additional resources and more sophisticated modeling techniques.

4.3.2 SWIN-CLIP

Since SWIN-Transformer has proven effective for herbarium specimen classification,

and CLIP is well-regarded for its zero-shot classification capabilities, this section ex-

plores the potential of combining both worlds. The core strength of CLIP lies not in

its specific model architecture but in its contrastive learning framework, which trains

the model to align image and text embeddings by maximizing their cosine similar-

ity. Prior research (Zhai et al., 2022) has demonstrated that mixing and matching

components of the contrastive learning framework, including vision backbones and

text encoders, can yield strong results across diverse tasks, outperforming original

CLIP. This work builds on that insight by integrating SWIN as a vision backbone

into CLIP, leveraging its hierarchical feature extraction capabilities to enhance rep-

resentation learning for fine-grained herbarium species classification.

Unlike the Vision Transformer (ViT), which processes global image patches, SWIN



50

utilizes a hierarchical structure with shifted windows, allowing it to capture both local

and global image context more effectively. This structure is especially advantageous

for fine-grained classification, where subtle and localized visual features differentiate

classes—such as species with minor morphological differences. In addition, by inte-

grating SWIN as the visual backbone to CLIP, the model retains zero-shot prediction

capability, allowing it to generalize to new categories without additional or with min-

imal training. This makes it highly suitable for complex and taxonomically diverse

datasets in herbaria research.

Due to resource constraints, SWIN-CLIP was trained on subsets of the NAFlora-

1M dataset, first with 100, then with 1000 classes. The model is also substantially

larger than the original CLIP model, so the SWIN vision backbone was partially

frozen during training. The transformer text encoder was trained fully from the

”openai/clip-vit-base-patch32” checkpoint (Radford et al., 2021). The freezing strat-

egy for the SWIN backbone is denoted by a suffix, e.g. ”Finetuned vX”. Here, ”vX”

refers to the freezing of the last X transformer blocks and beyond. So, ”Finetuned v2”

refers to the training of the last 2 SWIN transformer blocks and beyond, and keeping

the first 2 transformer blocks frozen. In addition, two scenarios for the SWIN vision

backbone were explored:

• SWIN-Finetuned (”finetuned”): The SWIN vision backbone was finetuned on

the herbarium dataset. The same checkpoint used for SWIN-Finetuned in the

previous section.

• SWIN-Base (”base”): The SWIN vision backbone is pretrained on ImageNet-

22k, and was not finetuned on the herbarium dataset.

To form a baseline, the original CLIP model (’baseline’) was also finetuned on

the same set of labels. All models were trained with a batch size of 128, a learning
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rate of 0.0001, and a weight decay of 0.05. The loss function used was standard

Cross-Entropy. The models were trained for 40 epochs on 2 NVIDIA L40S GPUs.

Results of training the SWIN-CLIP model on a subset of 100 labels of the NAFlora-

1M dataset are shown in Figure 4·2. Across all SWIN-backbone configurations (”fine-

tuned” or ”base”), the final validation accuracy during training (blue bars) demon-

strates performance comparable to the baseline CLIP model (”baseline”). However,

differences in performance emerge when specific configurations are compared. For in-

stance, in the ”base v2” and ”finetuned v2” configurations, where the last two trans-

former blocks are unfrozen, SWIN-CLIP with the ImageNet-22k pretrained backbone

outperforms the finetuned SWIN backbone. By contrast, unfreezing an additional

transformer block (”v3” configurations) leads to the opposite result: the finetuned

backbone achieves the highest accuracy, slightly outperforming the baseline CLIP

model.

Interestingly, SWIN-CLIP consistently outperforms baseline CLIP in zero-shot

accuracy (red bars), underscoring the robustness of the SWIN backbone for gener-

alization tasks. The ”base v3” configuration achieves the highest zero-shot accuracy

among all models, with a top-1 accuracy of 20%, compared to 4% for baseline CLIP.

This substantial improvement suggests that the SWIN backbone enhances CLIP’s

capacity for feature representation in fine-grained, domain-specific categories, even

without labeled training data.

These results highlight several key trends. First, the performance trade-offs be-

tween pretrained and finetuned backbones suggest that domain-specific fine-tuning

can significantly enhance task-specific accuracy, especially when sufficient transformer

blocks are unfrozen. Second, the significant improvements in zero-shot accuracy

achieved by SWIN-CLIP indicate that integrating SWIN into the CLIP architecture

may address inherent limitations in CLIP’s feature representation for fine-grained
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categories.

While these findings are promising, they are based on a small subset of the

NAFlora-1M dataset and may not fully reflect performance on the entire dataset.

Future work should validate these results on larger sets of species (labels), explore

additional SWIN configurations, and investigate the effects of advanced training tech-

niques, such as domain-specific augmentations or specialized loss functions. Further

scaling of the dataset and computational resources (such as training the SWIN back-

bone fully) may unlock greater performance.

4.4 Future Directions

The SWIN-CLIP model holds substantial promise for advancing zero-shot classifica-

tion accuracy across the extensive herbarium species dataset, encompassing 15,501

classes. While finetuning the SWIN model on herbarium images has already yielded

notable improvements in fine-grained classification, preliminary experiments integrat-

ing SWIN-CLIP demonstrate that its zero-shot capabilities outperform those of con-

ventional CLIP. This underscores the potential for SWIN-CLIP to better generalize

to unseen species, an essential feature given the frequent inclusion of rare or newly

discovered specimens in herbaria. Future work will focus on further evaluating and

refining this integration, such as with other text decoder models like BERT.

Building on these advancements, I propose the development of a multimodal con-

versational assistant tailored for herbarium specimen analysis, inspired by LLaVa-Med

(Li et al., 2024). This system will leverage the visual understanding capabilities of

fine-tuned SWIN-based models alongside large language models to provide researchers

and botanists with a seamless tool for querying specimen data. A critical component

of this effort involves generating high-quality visual descriptions of herbarium species

to enhance the model’s training data. By combining visual and textual data, the as-
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sistant will be equipped to answer complex queries, provide detailed descriptions, and

support taxonomic research. This novel direction represents a significant step toward

bringing cutting-edge AI capabilities into the field of botanical science, fostering new

discoveries and improving accessibility to herbaria collections worldwide.



54

Figure 4·1: Example images from the NAFlora-1M dataset showing
the diversity and complexity of herbarium specimens.
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Figure 4·2: Comparison of training validation (blue) and zero-shot
(red) accuracies on 100 labels of the NAFlora-1M dataset between mul-
tiple configurations of SWIN-CLIP (’finetuned ...’ and ’base ...’), and
original CLIP (’baseline’)
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Chapter 5

Conclusions

This thesis explored the development of AI systems across three distinct domains:

assistive technology, botanical research, and academic engagement, each aimed at

addressing unique challenges while advancing the integration of AI into specialized

applications. Through the design and implementation of practical, user-focused so-

lutions, this work contributes to the broader goal of creating accessible, scalable, and

impactful AI systems.

CameraMouseAI and KeyGlide—were developed to empower individuals with

severe motor impairments. CameraMouseAI extended traditional head-controlled

mouse replacement systems by incorporating customizable gesture-based selection

mechanisms, tailored to users’ needs. KeyGlide introduced a motion-based text in-

put interface that leveraged predictive text to enhance typing speed and reduce cog-

nitive effort. Empirical evaluations of both systems demonstrated their usability and

effectiveness, highlighting their potential to improve digital accessibility.

For botanical research, the thesis focused on fine-grained classification tasks in

the herbarium domain. Using the SWIN-Transformer architecture, models were fine-

tuned on a dataset containing over 15,000 species, achieving significant accuracy in

species identification. Building on this, a hybrid model—SWIN-CLIP—was inves-

tigated, integrating SWIN’s fine-grained visual capabilities with CLIP’s zero-shot

learning framework. Results showed that SWIN-CLIP outperformed baseline models

in zero-shot tasks, underscoring its potential for scaling herbarium specimen analysis
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without requiring extensive labeled data. These advancements provide a foundation

for developing a broader, multimodal herbarium model capable of supporting tasks

such as morphological analysis, species migration tracking, and ecological studies.

In education, the thesis introduced Edubotics.ai, a platform for deploying aca-

demic conversational assistants. This system combines intelligent data extraction

pipelines, advanced retrieval techniques, and long-term personalization to adapt seam-

lessly to diverse course content. The platform processes a variety of content formats,

such as PDFs, Jupyter notebooks, and GitHub repositories, enabling the generation of

contextually aware and accurate responses. The results demonstrated the platform’s

scalability and effectiveness in academic environments, with promising applications

in providing personalized student support and improving engagement.

Looking forward, several directions emerge for future research. For Camera-

MouseAI and KeyGlide, incorporating adaptive calibration during the initial setup

could enhance usability by tailoring functionality to individual users’ movement pat-

terns, while exploring more intuitive key arrangements may further accelerate let-

ter acquisition in text input tasks. In herbarium recognition, developing a LLaVa-

powered conversational assistant would bridge image recognition with detailed con-

textual and ecological analysis. For Edubotics.ai, advanced agentic orchestration for

retrieval, query processing, and data collection could enable multi-step, and more

context-aware interactions, like Socratic assistance.

Overall, the contributions of this thesis demonstrate the versatility and potential

of AI in addressing diverse and impactful challenges. By balancing technical rigor with

practical applications, this work lays a foundation for future advancements that can

further integrate AI into accessibility, research, and education to deliver meaningful

societal benefits.
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Appendix A

Proof of xyz

Nothing here yet.
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